The impact of modeling the dependencies among patient findings on classification accuracy and calibration
نویسندگان
چکیده
We present a new Bayesian classifier for computer-aided diagnosis. The new classifier builds upon the naive-Bayes classifier, and models the dependencies among patient findings in an attempt to improve its performance, both in terms of classification accuracy and in terms of calibration of the estimated probabilities. This work finds motivation in the argument that highly calibrated probabilities are necessary for the clinician to be able to rely on the model's recommendations. Experimental results are presented, supporting the conclusion that modeling the dependencies among findings improves calibration.
منابع مشابه
Modeling and design of a diagnostic and screening algorithm based on hybrid feature selection-enabled linear support vector machine classification
Background: In the current study, a hybrid feature selection approach involving filter and wrapper methods is applied to some bioscience databases with various records, attributes and classes; hence, this strategy enjoys the advantages of both methods such as fast execution, generality, and accuracy. The purpose is diagnosing of the disease status and estimating of the patient survival. Method...
متن کاملModeling of qualitative parameters (Electrical conductivity and total dissolved solids) of Karun river at Mollasani, Ahvaz and Farsiat stations using data mining methods
Background and Objective: In the present study, EC and TDS quality parameters of Karun River were modeled using data-mining algorithms including LSSVM, ANFIS, and ANN, at Mollasani, Ahvaz and Farsiat hydrometric stations. Material and Methods: Eight different inputs including the combination of Cl-1, Ca+2, Na+1, Mg+2, K+1, CO32-, HCO3, and SO42- with discharge flow (Q) were selected as non-ran...
متن کاملLinear and Nonlinear Multivariate Classification of Iranian Bottled Mineral Waters According to Their Elemental Content Determined by ICP-OES
The combinations of inductively coupled plasma-optical emission spectrometry (ICP-OES) and three classification algorithms, i.e., partial least squares discriminant analysis (PLS-DA), least squares support vector machine (LS-SVM) and soft independent modeling of class analogies (SIMCA), for discriminating different brands of Iranian bottled mineral waters, were explored. ICP-OES was used for th...
متن کاملFactors Influencing Drug Injection History among Prisoners: A Comparison between Classification and Regression Trees and Logistic Regression Analysis
Background: Due to the importance of medical studies, researchers of this field should be familiar with various types of statistical analyses to select the most appropriate method based on the characteristics of their data sets. Classification and regression trees (CARTs) can be as complementary to regression models. We compared the performance of a logistic regression model and a CART in predi...
متن کاملپایش و پیشبینی روند تغییرات کاربری اراضی با استفاده از تصاویر ماهوارهای و زنجیرۀ مارکوف (مطالعۀ موردی: حوزۀ آبخیز سمل- استان بوشهر)
Assessment of land use spatiotemporal changes provide valuable data for managers to elaborate plans. Land use change modeling is one of the methods used by planers to manage land use changes. Detection of such changes may help decision makers and planners to understand the factors in land use and land cover changes in order to take effective and useful measures. Remote sensing (RS) and geograph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. AMIA Symposium
دوره شماره
صفحات -
تاریخ انتشار 1998